Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Algorithms for Computing the Stationary Distribution, Simulating Random Walks, and More (1608.03270v2)

Published 10 Aug 2016 in cs.DS

Abstract: In this paper, we provide faster algorithms for computing various fundamental quantities associated with random walks on a directed graph, including the stationary distribution, personalized PageRank vectors, hitting times, and escape probabilities. In particular, on a directed graph with $n$ vertices and $m$ edges, we show how to compute each quantity in time $\tilde{O}(m{3/4}n+mn{2/3})$, where the $\tilde{O}$ notation suppresses polylogarithmic factors in $n$, the desired accuracy, and the appropriate condition number (i.e. the mixing time or restart probability). Our result improves upon the previous fastest running times for these problems; previous results either invoke a general purpose linear system solver on a $n\times n$ matrix with $m$ non-zero entries, or depend polynomially on the desired error or natural condition number associated with the problem (i.e. the mixing time or restart probability). For sparse graphs, we obtain a running time of $\tilde{O}(n{7/4})$, breaking the $O(n{2})$ barrier of the best running time one could hope to achieve using fast matrix multiplication. We achieve our result by providing a similar running time improvement for solving directed Laplacian systems, a natural directed or asymmetric analog of the well studied symmetric or undirected Laplacian systems. We show how to solve such systems in time $\tilde{O}(m{3/4}n+mn{2/3})$, and efficiently reduce a broad range of problems to solving $\tilde{O}(1)$ directed Laplacian systems on Eulerian graphs. We hope these results and our analysis open the door for further study into directed spectral graph theory.

Citations (59)

Summary

We haven't generated a summary for this paper yet.