Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns (1608.03217v1)

Published 10 Aug 2016 in cs.CV

Abstract: The recognition of human actions and the determination of human attributes are two tasks that call for fine-grained classification. Indeed, often rather small and inconspicuous objects and features have to be detected to tell their classes apart. In order to deal with this challenge, we propose a novel convolutional neural network that mines mid-level image patches that are sufficiently dedicated to resolve the corresponding subtleties. In particular, we train a newly de- signed CNN (DeepPattern) that learns discriminative patch groups. There are two innovative aspects to this. On the one hand we pay attention to contextual information in an origi- nal fashion. On the other hand, we let an iteration of feature learning and patch clustering purify the set of dedicated patches that we use. We validate our method for action clas- sification on two challenging datasets: PASCAL VOC 2012 Action and Stanford 40 Actions, and for attribute recogni- tion we use the Berkeley Attributes of People dataset. Our discriminative mid-level mining CNN obtains state-of-the- art results on these datasets, without a need for annotations about parts and poses.

Citations (46)

Summary

We haven't generated a summary for this paper yet.