Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Similarity Search on Automata Processors (1608.03175v2)

Published 9 Aug 2016 in cs.DC

Abstract: Similarity search is a critical primitive for a wide variety of applications including natural language processing, content-based search, machine learning, computer vision, databases, robotics, and recommendation systems. At its core, similarity search is implemented using the k-nearest neighbors (kNN) algorithm, where computation consists of highly parallel distance calculations and a global top-k sort. In contemporary von-Neumann architectures, kNN is bottlenecked by data movement which limits throughput and latency. In this paper, we present and evaluate a novel automata-based algorithm for kNN on the Micron Automata Processor (AP), which is a non-von Neumann near-data processing architecture. By employing near-data processing, the AP minimizes the data movement bottleneck and is able to achieve better performance. Unlike prior work in the automata processing space, our work combines temporal encodings with automata design to augment the space of applications for the AP. We evaluate our design's performance on the AP and compare to state-of-the-art CPU, GPU, and FPGA implementations; we show that the current generation of AP hardware can achieve over 50x speedup over CPUs while maintaining competitive energy efficiency gains. We also propose several automata optimization techniques and simple architectural extensions that highlight the potential of the AP hardware.

Citations (10)

Summary

We haven't generated a summary for this paper yet.