Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoder-decoder with Focus-mechanism for Sequence Labelling Based Spoken Language Understanding (1608.02097v2)

Published 6 Aug 2016 in cs.CL

Abstract: This paper investigates the framework of encoder-decoder with attention for sequence labelling based spoken language understanding. We introduce Bidirectional Long Short Term Memory - Long Short Term Memory networks (BLSTM-LSTM) as the encoder-decoder model to fully utilize the power of deep learning. In the sequence labelling task, the input and output sequences are aligned word by word, while the attention mechanism cannot provide the exact alignment. To address this limitation, we propose a novel focus mechanism for encoder-decoder framework. Experiments on the standard ATIS dataset showed that BLSTM-LSTM with focus mechanism defined the new state-of-the-art by outperforming standard BLSTM and attention based encoder-decoder. Further experiments also show that the proposed model is more robust to speech recognition errors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Su Zhu (29 papers)
  2. Kai Yu (202 papers)
Citations (71)

Summary

We haven't generated a summary for this paper yet.