Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^{N}$ (1608.02031v3)

Published 5 Aug 2016 in math.AP, math.DS, and math.FA

Abstract: In the current paper, we consider the following parabolic-elliptic semilinear Keller-Segel model on $\mathbb{R}{N}$, \begin{equation*} \begin{cases} u_{t}=\nabla\cdot (\nabla u-\chi u\nabla v)+a u -b u2, \quad x\in\mathbb{R}N,\,\, t>0\cr 0=(\Delta- I)v+ u, \quad x\in\mathbb{R}N,\,\, t>0, \end{cases} \end{equation*} where $ \chi >0, \ a\ge 0,\ b> 0$ are constant real numbers and $N$ is a positive integer. We first prove the local existence and uniqueness of classical solutions $(u(x,t;u_0),v(x,t;u_0))$ with $u(x,0;u_0)=u_0(x)$ for various initial functions $u_0(x)$. Next, under some conditions on the constants $a, b, \chi$ and the dimension $N$, we prove the global existence and boundedness of classical solution $(u(x,t;u_0),v(x,t;u_0))$ for given initial functions $u_0(x)$. Finally, we investigate the asymptotic behavior of the global solutions with strictly positive initial functions or nonnegative compactly supported initial functions. Under some conditions on the constants $a, b, \chi$ and the dimension $N$, we show that for every strictly positive initial function $u_0(\cdot)$, $$\lim_{t\to\infty} \sup_{x\in\mathbb{R}N} \big[|u(x,t;u_0)-\frac{a}{b}|+|v(x,t;u_0)-\frac{a}{b}|\big]=0,$$ and that for every nonnegative initial function $u_0(\cdot)$ with non-empty and compact support ${\rm supp}(u_0)$, there are $0<c_{\rm low}^*(u_0)\leq c_{\rm up}^*(u_0)<\infty$ such that $$\lim_{t\to\infty} \sup_{|x|\leq ct} \big[|u(x,t;u_0)-\frac{a}{b}|+|v(x,t;u_0)-\frac{a}{b}|\big]=0\quad \forall\,\, 0<c<c_{\rm low}^*(u_0)$$ and $$\lim_{t\to\infty}\sup_{|x|\geq ct} \big[u(x,t;u_0)+v(x,t;u_0)\big]=0\quad \forall\,\, c>c_{\rm up}*(u_0).$$

Summary

We haven't generated a summary for this paper yet.