Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resolving Out-of-Vocabulary Words with Bilingual Embeddings in Machine Translation (1608.01910v1)

Published 5 Aug 2016 in cs.CL

Abstract: Out-of-vocabulary words account for a large proportion of errors in machine translation systems, especially when the system is used on a different domain than the one where it was trained. In order to alleviate the problem, we propose to use a log-bilinear softmax-based model for vocabulary expansion, such that given an out-of-vocabulary source word, the model generates a probabilistic list of possible translations in the target language. Our model uses only word embeddings trained on significantly large unlabelled monolingual corpora and trains over a fairly small, word-to-word bilingual dictionary. We input this probabilistic list into a standard phrase-based statistical machine translation system and obtain consistent improvements in translation quality on the English-Spanish language pair. Especially, we get an improvement of 3.9 BLEU points when tested over an out-of-domain test set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.