Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing Deep Convolutional Networks for Large Scale Visual Concept Classification (1608.01866v1)

Published 5 Aug 2016 in cs.CV

Abstract: Deep learning architectures are showing great promise in various computer vision domains including image classification, object detection, event detection and action recognition. In this study, we investigate various aspects of convolutional neural networks (CNNs) from the big data perspective. We analyze recent studies and different network architectures both in terms of running time and accuracy. We present extensive empirical information along with best practices for big data practitioners. Using these best practices we propose efficient fusion mechanisms both for single and multiple network models. We present state-of-the art results on benchmark datasets while keeping computational costs at a lower level. Another contribution of our paper is that these state-of-the-art results can be reached without using extensive data augmentation techniques.

Citations (9)

Summary

We haven't generated a summary for this paper yet.