Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Lie algebras consisting of locally nilpotent derivations (1608.01490v1)

Published 4 Aug 2016 in math.RA

Abstract: Let $K$ be an algebraically closed field of characteristic zero and $A$ an integral $K$-domain. The Lie algebra $Der_{K}(A)$ of all $K$-derivations of $A$ contains the set $LND(A)$ of all locally nilpotent derivations. The structure of $LND(A)$ is of great interest, and the question about properties of Lie algebras contained in $LND(A)$ is still open. An answer to it in the finite dimensional case is given. It is proved that any finite dimensional (over $K$) subalgebra of $Der_{K}(A)$ consisting of locally nilpotent derivations is nilpotent. In the case $A=K[x, y],$ it is also proved that any subalgebra of $Der_{K}(A)$ consisting of locally nilpotent derivations is conjugated by an automorphism of $K[x, y]$ with a subalgebra of the triangular Lie algebra.

Summary

We haven't generated a summary for this paper yet.