Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morphological Priors for Probabilistic Neural Word Embeddings (1608.01056v2)

Published 3 Aug 2016 in cs.CL

Abstract: Word embeddings allow natural language processing systems to share statistical information across related words. These embeddings are typically based on distributional statistics, making it difficult for them to generalize to rare or unseen words. We propose to improve word embeddings by incorporating morphological information, capturing shared sub-word features. Unlike previous work that constructs word embeddings directly from morphemes, we combine morphological and distributional information in a unified probabilistic framework, in which the word embedding is a latent variable. The morphological information provides a prior distribution on the latent word embeddings, which in turn condition a likelihood function over an observed corpus. This approach yields improvements on intrinsic word similarity evaluations, and also in the downstream task of part-of-speech tagging.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Parminder Bhatia (50 papers)
  2. Robert Guthrie (3 papers)
  3. Jacob Eisenstein (73 papers)
Citations (42)