Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Lean Immutable Multi-Maps on the JVM based on Heterogeneous Hash-Array Mapped Tries (1608.01036v1)

Published 3 Aug 2016 in cs.DS and cs.PL

Abstract: An immutable multi-map is a many-to-many thread-friendly map data structure with expected fast insert and lookup operations. This data structure is used for applications processing graphs or many-to-many relations as applied in static analysis of object-oriented systems. When processing such big data sets the memory overhead of the data structure encoding itself is a memory usage bottleneck. Motivated by reuse and type-safety, libraries for Java, Scala and Clojure typically implement immutable multi-maps by nesting sets as the values with the keys of a trie map. Like this, based on our measurements the expected byte overhead for a sparse multi-map per stored entry adds up to around 65B, which renders it unfeasible to compute with effectively on the JVM. In this paper we propose a general framework for Hash-Array Mapped Tries on the JVM which can store type-heterogeneous keys and values: a Heterogeneous Hash-Array Mapped Trie (HHAMT). Among other applications, this allows for a highly efficient multi-map encoding by (a) not reserving space for empty value sets and (b) inlining the values of singleton sets while maintaining a (c) type-safe API. We detail the necessary encoding and optimizations to mitigate the overhead of storing and retrieving heterogeneous data in a hash-trie. Furthermore, we evaluate HHAMT specifically for the application to multi-maps, comparing them to state-of-the-art encodings of multi-maps in Java, Scala and Clojure. We isolate key differences using microbenchmarks and validate the resulting conclusions on a real world case in static analysis. The new encoding brings the per key-value storage overhead down to 30B: a 2x improvement. With additional inlining of primitive values it reaches a 4x improvement.

Citations (2)

Summary

We haven't generated a summary for this paper yet.