Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool (1607.08878v1)

Published 29 Jul 2016 in cs.NE, cs.AI, and cs.LG

Abstract: As data science continues to grow in popularity, there will be an increasing need to make data science tools more scalable, flexible, and accessible. In particular, automated machine learning (AutoML) systems seek to automate the process of designing and optimizing machine learning pipelines. In this chapter, we present a genetic programming-based AutoML system called TPOT that optimizes a series of feature preprocessors and machine learning models with the goal of maximizing classification accuracy on a supervised classification problem. Further, we analyze a large database of pipelines that were previously used to solve various supervised classification problems and identify 100 short series of machine learning operations that appear the most frequently, which we call the building blocks of machine learning pipelines. We harness these building blocks to initialize TPOT with promising solutions, and find that this sensible initialization method significantly improves TPOT's performance on one benchmark at no cost of significantly degrading performance on the others. Thus, sensible initialization with machine learning pipeline building blocks shows promise for GP-based AutoML systems, and should be further refined in future work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Randal S. Olson (19 papers)
  2. Jason H. Moore (56 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.