Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints (1607.08805v1)

Published 29 Jul 2016 in cs.DS

Abstract: We study various generalizations of the secretary problem with submodular objective functions. Generally, a set of requests is revealed step-by-step to an algorithm in random order. For each request, one option has to be selected so as to maximize a monotone submodular function while ensuring feasibility. For our results, we assume that we are given an offline algorithm computing an $\alpha$-approximation for the respective problem. This way, we separate computational limitations from the ones due to the online nature. When only focusing on the online aspect, we can assume $\alpha = 1$. In the submodular secretary problem, feasibility constraints are cardinality constraints. That is, out of a randomly ordered stream of entities, one has to select a subset size $k$. For this problem, we present a $0.31\alpha$-competitive algorithm for all $k$, which asymptotically reaches competitive ratio $\frac{\alpha}{e}$ for large $k$. In submodular secretary matching, one side of a bipartite graph is revealed online. Upon arrival, each node has to be matched permanently to an offline node or discarded irrevocably. We give an $\frac{\alpha}{4}$-competitive algorithm. In both cases, we improve over previously best known competitive ratios, using a generalization of the algorithm for the classic secretary problem. Furthermore, we give an $O(\alpha d{-\frac{2}{B-1}})$-competitive algorithm for submodular function maximization subject to linear packing constraints. Here, $d$ is the column sparsity, that is the maximal number of none-zero entries in a column of the constraint matrix, and $B$ is the minimal capacity of the constraints. Notably, this bound is independent of the total number of constraints. We improve the algorithm to be $O(\alpha d{-\frac{1}{B-1}})$-competitive if both $d$ and $B$ are known to the algorithm beforehand.

Citations (17)

Summary

We haven't generated a summary for this paper yet.