Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic properties of Principal Component Analysis and shrinkage-bias adjustment under the Generalized Spiked Population model (1607.08647v1)

Published 28 Jul 2016 in math.ST, stat.ML, and stat.TH

Abstract: With the development of high-throughput technologies, principal component analysis (PCA) in the high-dimensional regime is of great interest. Most of the existing theoretical and methodological results for high-dimensional PCA are based on the spiked population model in which all the population eigenvalues are equal except for a few large ones. Due to the presence of local correlation among features, however, this assumption may not be satisfied in many real-world datasets. To address this issue, we investigated the asymptotic behaviors of PCA under the generalized spiked population model. Based on the theoretical results, we proposed a series of methods for the consistent estimation of population eigenvalues, angles between the sample and population eigenvectors, correlation coefficients between the sample and population principal component (PC) scores, and the shrinkage bias adjustment for the predicted PC scores. Using numerical experiments and real data examples from the genetics literature, we showed that our methods can greatly reduce bias and improve prediction accuracy.

Citations (8)

Summary

We haven't generated a summary for this paper yet.