Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Worst-case Redundancy of Optimal Binary AIFV Codes and their Extended Codes (1607.07247v4)

Published 25 Jul 2016 in cs.IT and math.IT

Abstract: Binary AIFV codes are lossless codes that generalize the class of instantaneous FV codes. The code uses two code trees and assigns source symbols to incomplete internal nodes as well as to leaves. AIFV codes are empirically shown to attain better compression ratio than Huffman codes. Nevertheless, an upper bound on the redundancy of optimal binary AIFV codes is only known to be 1, which is the same as the bound of Huffman codes. In this paper, the upper bound is improved to 1/2, which is shown to coincide with the worst-case redundancy of the codes. Along with this, the worst-case redundancy is derived in terms of $p_{\max}\geq$1/2, where $p_{\max}$ is the probability of the most likely source symbol. Additionally, we propose an extension of binary AIFV codes, which use $m$ code trees and allow at most $m$-bit decoding delay. We show that the worst-case redundancy of the extended binary AIFV codes is $1/m$ for $m \leq 4.$

Citations (29)

Summary

We haven't generated a summary for this paper yet.