Papers
Topics
Authors
Recent
2000 character limit reached

A construction of commuting systems of integrable symplectic birational maps

Published 24 Jul 2016 in nlin.SI, math-ph, math.AG, math.MP, and math.SG | (1607.07085v1)

Abstract: We give a construction of completely integrable $(2m)$-dimensional Hamiltonian systems with cubic Hamilton functions. The construction depends on a constant skew-Hamiltonian matrix $A$, that is, a matrix satisfying $A{\rm T}J=JA$, where $J$ is a non-degenerate skew-symmetric matrix defining the standard symplectic structure on the phase space $\mathbb R{2m}$. Applying to any such system the so called Kahan-Hirota-Kimura discretization scheme, we arrive at a birational $(2m)$-dimensional map. We show that this map is symplectic with respect to a symplectic structure that is a perturbation of the standard symplectic structure on $\mathbb R{2m}$, and possesses $m$ independent integrals of motion, which are perturbations of the original Hamilton functions and are in involution with respect to the invariant symplectic structure. Thus, this map is completely integrable in the Liouville-Arnold sense. Moreover, under a suitable normalization of the original $m$-tuples of commuting vector fields, their Kahan-Hirota-Kimura discretizations also commute and share the invariant symplectic structure and the $m$ integrals of motion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.