Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduler Technologies in Support of High Performance Data Analysis (1607.06544v1)

Published 22 Jul 2016 in cs.DC

Abstract: Job schedulers are a key component of scalable computing infrastructures. They orchestrate all of the work executed on the computing infrastructure and directly impact the effectiveness of the system. Recently, job workloads have diversified from long-running, synchronously-parallel simulations to include short-duration, independently parallel high performance data analysis (HPDA) jobs. Each of these job types requires different features and scheduler tuning to run efficiently. A number of schedulers have been developed to address both job workload and computing system heterogeneity. High performance computing (HPC) schedulers were designed to schedule large-scale scientific modeling and simulations on supercomputers. Big Data schedulers were designed to schedule data processing and analytic jobs on clusters. This paper compares and contrasts the features of HPC and Big Data schedulers with a focus on accommodating both scientific computing and high performance data analytic workloads. Job latency is critical for the efficient utilization of scalable computing infrastructures, and this paper presents the results of job launch benchmarking of several current schedulers: Slurm, Son of Grid Engine, Mesos, and Yarn. We find that all of these schedulers have low utilization for short-running jobs. Furthermore, employing multilevel scheduling significantly improves the utilization across all schedulers.

Citations (30)

Summary

We haven't generated a summary for this paper yet.