Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving equations and optimization problems with uncertainty (1607.06344v3)

Published 21 Jul 2016 in cs.CG

Abstract: We study the problem of detecting zeros of continuous functions that are known only up to an error bound, extending the earlier theoretical work with explicit algorithms and experiments with an implementation. More formally, the robustness of zero of a continuous map $f: X\to \mathbb{R}n$ is the maximal $r>0$ such that each $g:X\to\mathbb{R}n$ with $|f-g|_\infty\le r$ has a zero. We develop and implement an efficient algorithm approximating the robustness of zero. Further, we show how to use the algorithm for approximating worst-case optima in optimization problems in which the feasible domain is defined by equations that are only known approximately. An important ingredient is an algorithm for deciding the topological extension problem based on computing cohomological obstructions to extendability and their persistence. We describe an explicit algorithm for the primary and secondary obstruction, two stages of a sequence of algorithms with increasing complexity. We provide experimental evidence that for random Gaussian fields, the primary obstruction---a much less computationally demanding test than the secondary obstruction---is typically sufficient for approximating robustness of zero.

Citations (1)

Summary

We haven't generated a summary for this paper yet.