Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploring phrase-compositionality in skip-gram models

Published 21 Jul 2016 in cs.CL | (1607.06208v1)

Abstract: In this paper, we introduce a variation of the skip-gram model which jointly learns distributed word vector representations and their way of composing to form phrase embeddings. In particular, we propose a learning procedure that incorporates a phrase-compositionality function which can capture how we want to compose phrases vectors from their component word vectors. Our experiments show improvement in word and phrase similarity tasks as well as syntactic tasks like dependency parsing using the proposed joint models.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.