Papers
Topics
Authors
Recent
Search
2000 character limit reached

Energy and Laplacian of Fractal Interpolation Functions

Published 21 Jul 2016 in math.FA | (1607.06176v2)

Abstract: In this paper, we first characterize the finiteness of fractal interpolation functions (FIFs) on post critical finite self-similar sets. Then we study the Laplacian of FIFs with uniform vertical scaling factors on Sierpinski gasket (SG). As an application, we prove that the solution of the following Dirichlet problem on SG is an FIF with uniform vertical scaling factor $\frac{1}{5}$: $\Delta u=0$ on $SG\setminus {q_1,q_2,q_3}$, and $u(q_i)=a_i$, $i=1,2,3$, where $q_i$, $i=1,2,3$, are boundary points of SG.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.