The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory
Abstract: We compute the topological susceptibility of the SU(N) Yang-Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions are instrumental to make simulations feasible on the finer lattices at the larger N.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.