Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Candidate Risk Factors for Prescription Drug Side Effects using Causal Contrast Set Mining (1607.05845v1)

Published 20 Jul 2016 in cs.AI

Abstract: Big longitudinal observational databases present the opportunity to extract new knowledge in a cost effective manner. Unfortunately, the ability of these databases to be used for causal inference is limited due to the passive way in which the data are collected resulting in various forms of bias. In this paper we investigate a method that can overcome these limitations and determine causal contrast set rules efficiently from big data. In particular, we present a new methodology for the purpose of identifying risk factors that increase a patients likelihood of experiencing the known rare side effect of renal failure after ingesting aminosalicylates. The results show that the methodology was able to identify previously researched risk factors such as being prescribed diuretics and highlighted that patients with a higher than average risk of renal failure may be even more susceptible to experiencing it as a side effect after ingesting aminosalicylates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.