Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable selection and structure identification for varying coefficient Cox models (1607.05415v1)

Published 19 Jul 2016 in math.ST and stat.TH

Abstract: We consider varying coefficient Cox models with high-dimensional covariates. We apply the group Lasso method to these models and propose a variable selection procedure. Our procedure copes with variable selection and structure identification from a high dimensional varying coefficient model to a semivarying coefficient model simultaneously. We derive an oracle inequality and closely examine restrictive eigenvalue conditions, too. In this paper, we give the details for Cox models with time-varying coefficients. The theoretical results on variable selection can be easily extended to some other important models and we briefly mention those models since those models can be treated in the same way. The models considered in this paper are the most popular models among structured nonparametric regression models. The results of a small numerical study are also given.

Summary

We haven't generated a summary for this paper yet.