Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Lipschitz continuity of solutions of hyperbolic Poisson's equation (1607.05374v2)

Published 19 Jul 2016 in math.AP

Abstract: In this paper, we investigate solutions of the hyperbolic Poisson equation $\Delta_{h}u(x)=\psi(x)$, where $\psi\in L{\infty}(\mathbb{B}{n}, \mathbb{R}n)$ and [ \Delta_{h}u(x)= (1-|x|2)2\Delta u(x)+2(n-2)(1-|x|2)\sum_{i=1}{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) ] is the hyperbolic Laplace operator in the $n$-dimensional space $\mathbb{R}n$ for $n\ge 2$. We show that if $n\geq 3$ and $u\in C{2}(\mathbb{B}{n},\mathbb{R}n) \cap C(\overline{\mathbb{B}{n}},\mathbb{R}n )$ is a solution to the hyperbolic Poisson equation, then it has the representation $u=P_{h}[\phi]-G_{ h}[\psi]$ provided that $u\mid_{\mathbb{S}{n-1}}=\phi$ and $\int_{\mathbb{B}{n}}(1-|x|{2}){n-1} |\psi(x)|\,d\tau(x)<\infty$. Here $P_{h}$ and $G_{h}$ denote Poisson and Green integrals with respect to $\Delta_{h}$, respectively. Furthermore, we prove that functions of the form $u=P_{h}[\phi]-G_{h}[\psi]$ are Lipschitz continuous.

Summary

We haven't generated a summary for this paper yet.