Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Ring Learning with Errors over the Tensor Product of Number Fields (1607.05244v3)

Published 18 Jul 2016 in cs.CR and cs.DM

Abstract: The "Ring Learning with Errors" (RLWE) problem was formulated as a variant of the "Learning with Errors" (LWE) problem, with the purpose of taking advantage of an additional algebraic structure in the underlying considered lattices; this enables improvements on the efficiency and cipher expansion on those cryptographic applications which were previously based on the LWE problem. In Eurocrypt 2010, Lyubashevsky et al. introduced this hardness problem and showed its relation to some known hardness problems over lattices with a special structure. In this work, we generalize these results and the problems presented by Lyubashevsky et al. to the more general case of multivariate rings, highlighting the main differences with respect to the security proof for the RLWE counterpart. This hardness problem is denoted as "Multivariate Ring Learning with Errors" ($m$-RLWE or multivariate RLWE) and we show its relation to hardness problems over the tensor product of ideal lattices. Additionally, the $m$-RLWE problem is more adequate than its univariate version for cryptographic applications dealing with multidimensional structures.

Citations (3)

Summary

We haven't generated a summary for this paper yet.