Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimator selection: a new method with applications to kernel density estimation (1607.05091v2)

Published 18 Jul 2016 in math.ST and stat.TH

Abstract: Estimator selection has become a crucial issue in non parametric estimation. Two widely used methods are penalized empirical risk minimization (such as penalized log-likelihood estimation) or pairwise comparison (such as Lepski's method). Our aim in this paper is twofold. First we explain some general ideas about the calibration issue of estimator selection methods. We review some known results, putting the emphasis on the concept of minimal penalty which is helpful to design data-driven selection criteria. Secondly we present a new method for bandwidth selection within the framework of kernel density density estimation which is in some sense intermediate between these two main methods mentioned above. We provide some theoretical results which lead to some fully data-driven selection strategy.

Summary

We haven't generated a summary for this paper yet.