Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of tropical graph homomorphisms (1607.04777v2)

Published 16 Jul 2016 in cs.DS, cs.DM, and math.CO

Abstract: A tropical graph $(H,c)$ consists of a graph $H$ and a (not necessarily proper) vertex-colouring $c$ of $H$. Given two tropical graphs $(G,c_1)$ and $(H,c)$, a homomorphism of $(G,c_1)$ to $(H,c)$ is a standard graph homomorphism of $G$ to $H$ that also preserves the vertex-colours. We initiate the study of the computational complexity of tropical graph homomorphism problems. We consider two settings. First, when the tropical graph $(H,c)$ is fixed; this is a problem called $(H,c)$-COLOURING. Second, when the colouring of $H$ is part of the input; the associated decision problem is called $H$-TROPICAL-COLOURING. Each $(H,c)$-COLOURING problem is a constraint satisfaction problem (CSP), and we show that a complexity dichotomy for the class of $(H,c)$-COLOURING problems holds if and only if the Feder-Vardi Dichotomy Conjecture for CSPs is true. This implies that $(H,c)$-COLOURING problems form a rich class of decision problems. On the other hand, we were successful in classifying the complexity of at least certain classes of $H$-TROPICAL-COLOURING problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Florent Foucaud (72 papers)
  2. Ararat Harutyunyan (25 papers)
  3. Pavol Hell (36 papers)
  4. Sylvain Legay (3 papers)
  5. Yannis Manoussakis (5 papers)
  6. Reza Naserasr (37 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.