Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Counterexample to the Forward Recursion in Fuzzy Critical Path Analysis Under Discrete Fuzzy Sets (1607.04583v1)

Published 9 May 2016 in cs.AI

Abstract: Fuzzy logic is an alternate approach for quantifying uncertainty relating to activity duration. The fuzzy version of the backward recursion has been shown to produce results that incorrectly amplify the level of uncertainty. However, the fuzzy version of the forward recursion has been widely proposed as an approach for determining the fuzzy set of critical path lengths. In this paper, the direct application of the extension principle leads to a proposition that must be satisfied in fuzzy critical path analysis. Using a counterexample it is demonstrated that the fuzzy forward recursion when discrete fuzzy sets are used to represent activity durations produces results that are not consistent with the theory presented. The problem is shown to be the application of the fuzzy maximum. Several methods presented in the literature are described and shown to provide results that are consistent with the extension principle.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (2)

Summary

We haven't generated a summary for this paper yet.