Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The higher twisted index theorem for foliations (1607.04248v2)

Published 14 Jul 2016 in math.KT

Abstract: Given a gerbe $L$, on the holonomy groupoid $\mathcal G$ of the foliation $(M, \mathcal F)$, whose pull-back to $M$ is torsion, we construct a Connes $\Phi$-map from the twisted Dupont-Sullivan bicomplex of $\mathcal G$ to the cyclic complex of the $L$-projective leafwise smoothing operators on $(M, \mathcal F)$. Our construction allows to couple the $K$-theory analytic indices of $L$-projective leafwise elliptic operators with the twisted cohomology of $B\mathcal G$ producing scalar higher invariants. Finally by adapting the Bismut-Quillen superconnection approach, we compute these higher twisted indices as integrals over the ambiant manifold of the expected twisted characteristic classes.

Summary

We haven't generated a summary for this paper yet.