Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary (1607.03944v2)
Abstract: We study nonlinear hyperbolic conservation laws posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable), a class of equations proposed by LeFloch and Okutmustur in 2008. Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1-type distance.