Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Representation Theory Perspective on Simultaneous Alignment and Classification (1607.03464v1)

Published 12 Jul 2016 in cs.CV and math.OC

Abstract: One of the difficulties in 3D reconstruction of molecules from images in single particle Cryo-Electron Microscopy (Cryo-EM), in addition to high levels of noise and unknown image orientations, is heterogeneity in samples: in many cases, the samples contain a mixture of molecules, or multiple conformations of one molecule. Many algorithms for the reconstruction of molecules from images in heterogeneous Cryo-EM experiments are based on iterative approximations of the molecules in a non-convex optimization that is prone to reaching suboptimal local minima. Other algorithms require an alignment in order to perform classification, or vice versa. The recently introduced Non-Unique Games framework provides a representation theoretic approach to studying problems of alignment over compact groups, and offers convex relaxations for alignment problems which are formulated as semidefinite programs (SDPs) with certificates of global optimality under certain circumstances. In this manuscript, we propose to extend Non-Unique Games to the problem of simultaneous alignment and classification with the goal of simultaneously classifying Cryo-EM images and aligning them within their respective classes. Our proposed approach can also be extended to the case of continuous heterogeneity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Roy R. Lederman (23 papers)
  2. Amit Singer (95 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.