Bayesian estimators of the Gamma distribution (1607.03302v1)
Abstract: In this paper we introduce two Bayesian estimators for learning the parameters of the Gamma distribution. The first algorithm uses a well known unnormalized conjugate prior for the Gamma shape and the second one uses a non-linear approximation to the likelihood and a prior on the shape that is conjugate to the approximated likelihood. In both cases use the Laplace approximation to compute the required expectations. We perform a theoretical comparison between maximum like- lihood and the presented Bayesian algorithms that allow us to provide non-informative parameter values for the priors hyper parameters. We also provide a numerical comparison using synthetic data. The introduction of these novel Bayesian estimators open the possibility of including Gamma distributions into more complex Bayesian structures, e.g. variational Bayesian mixture models.