Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian estimators of the Gamma distribution (1607.03302v1)

Published 12 Jul 2016 in stat.ME

Abstract: In this paper we introduce two Bayesian estimators for learning the parameters of the Gamma distribution. The first algorithm uses a well known unnormalized conjugate prior for the Gamma shape and the second one uses a non-linear approximation to the likelihood and a prior on the shape that is conjugate to the approximated likelihood. In both cases use the Laplace approximation to compute the required expectations. We perform a theoretical comparison between maximum like- lihood and the presented Bayesian algorithms that allow us to provide non-informative parameter values for the priors hyper parameters. We also provide a numerical comparison using synthetic data. The introduction of these novel Bayesian estimators open the possibility of including Gamma distributions into more complex Bayesian structures, e.g. variational Bayesian mixture models.

Summary

We haven't generated a summary for this paper yet.