Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing the Sum of Radii of Disjoint Balls or Disks (1607.02184v2)

Published 7 Jul 2016 in cs.CG and cs.DS

Abstract: Finding nonoverlapping balls with given centers in any metric space, maximizing the sum of radii of the balls, can be expressed as a linear program. Its dual linear program expresses the problem of finding a minimum-weight set of cycles (allowing 2-cycles) covering all vertices in a complete geometric graph. For points in a Euclidean space of any finite dimension~$d$, with any convex distance function on this space, this graph can be replaced by a sparse subgraph obeying a separator theorem. This graph structure leads to an algorithm for finding the optimum set of balls in time $O(n{2-1/d})$, improving the $O(n3)$ time of a naive cycle cover algorithm. As a subroutine, we provide an algorithm for weighted bipartite matching in graphs with separators, which speeds up the best previous algorithm for this problem on planar bipartite graphs from $O(n{3/2}\log n)$ to $O(n{3/2})$ time. We also show how to constrain the balls to all have radius at least a given threshold value, and how to apply our radius-sum optimization algorithms to the problem of embedding a finite metric space into a star metric minimizing the average distance to the hub.

Citations (3)

Summary

We haven't generated a summary for this paper yet.