Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise convergence of almost periodic Fourier series and associated series of dilates (1607.02041v1)

Published 7 Jul 2016 in math.CA

Abstract: Let $\mathcal S2$ be the Stepanov space and let $ \lambda_n\uparrow\infty$. Let $(a_n){n\ge 1}$ be satisfying Wiener's condition $A:= \sum{n\ge 1} \big(\sum_{k\, :\, n\le \lambda_k \le n+1}|a_k|\big)2 <\infty$. We prove that $\big| \sup_{N\ge 1} \big|\sum_{n=1}Na_n{\rm e}{i\lambda_n t}\big| \, \big|{\mathcal S2}\le C\, A{1/2} $ where $C>0$ denotes a universal constant. Moreover, the series $\sum{n\ge 1} a_n{\rm e}{it\lambda_n }$ converges for $\lambda$-a.e. $t\in \mathbb R$. This contains as a special case Hedenmalm and Saksman result for Dirichlet series. We also obtain maximal inequalities for corresponding series of dilates. Let $1\le p,q\le 2$ be such that $1/p+1/q=3/2$. Then for any sequence $(\alpha_n){n\ge 1}$ and $(\beta_n){n\ge 1}$ of complex numbers such that $K:=\sum_{n\ge 1} \big(\sum_{k\,:\, n\le \lambda_k< n+1}|\alpha_k|\,\big)p <\infty$ and $L:=\sum_{n\ge 1} \big(\sum_{k\,:\, n\le \mu_k< n+1} |\beta_k|\,\big)q <\infty$, we have $$ \Big|\sup_{N\ge 1} \big|\sum_{n=1}N \alpha_n D(\lambda_n t)\big|\, \Big|{\mathcal S2} \le C\, K{1/p}\, L{1/q } $$ where $D(t)= \sum{n\ge 1}\beta_n {\rm e}{i\mu_n t}$ is defined in $\mathcal S2$. Moreover, the series $\sum_{n\ge 1} \alpha_n D(\lambda_nt)$ converges in $\mathcal S2$ and for $\lambda$-a.e. $t\in \mathbb R$. We further show that if ${\lambda_k, k\ge 1}$ satisfies the following condition $$\sum_{ k\not=\ell\,,\, k'\not=\ell'\atop (k,\ell)\neq(k',\ell')}\big(1-|(\lambda_k-\lambda_\ell)-(\lambda_{k'}-\lambda_{\ell'}) |\big)+2 \, <\infty,$$ then the series $\sum{k} a_k {\rm e}{i\lambda_kt}$ converges on a set of positive Lebesgue measure, only if the series $\sum_{k=1}\infty |a_k|2$ converges. The above condition is in particular fulfilled when ${\lambda_k, k\ge 1}$ is a Sidon sequence.

Summary

We haven't generated a summary for this paper yet.