Papers
Topics
Authors
Recent
2000 character limit reached

Long cycles have the edge-Erdős-Pósa property

Published 7 Jul 2016 in math.CO | (1607.01903v3)

Abstract: We prove that the set of long cycles has the edge-Erd\H{o}s-P\'osa property: for every fixed integer $\ell\ge 3$ and every $k\in\mathbb{N}$, every graph $G$ either contains $k$ edge-disjoint cycles of length at least $\ell$ (long cycles) or an edge set $X$ of size $O(k2\log k + \ell k)$ such that $G-X$ does not contain any long cycle. This answers a question of Birmel\'e, Bondy, and Reed (Combinatorica 27 (2007), 135--145).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.