Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixtures of Bivariate von Mises Distributions with Applications to Modelling of Protein Dihedral Angles (1607.01312v2)

Published 5 Jul 2016 in stat.ML and q-bio.QM

Abstract: The modelling of empirically observed data is commonly done using mixtures of probability distributions. In order to model angular data, directional probability distributions such as the bivariate von Mises (BVM) is typically used. The critical task involved in mixture modelling is to determine the optimal number of component probability distributions. We employ the Bayesian information-theoretic principle of minimum message length (MML) to distinguish mixture models by balancing the trade-off between the model's complexity and its goodness-of-fit to the data. We consider the problem of modelling angular data resulting from the spatial arrangement of protein structures using BVM distributions. The main contributions of the paper include the development of the mixture modelling apparatus along with the MML estimation of the parameters of the BVM distribution. We demonstrate that statistical inference using the MML framework supersedes the traditional methods and offers a mechanism to objectively determine models that are of practical significance.

Summary

We haven't generated a summary for this paper yet.