Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Statistical Relational Entity Resolution in Knowledge Graphs (1607.00992v1)

Published 4 Jul 2016 in cs.AI and cs.CL

Abstract: Entity resolution, the problem of identifying the underlying entity of references found in data, has been researched for many decades in many communities. A common theme in this research has been the importance of incorporating relational features into the resolution process. Relational entity resolution is particularly important in knowledge graphs (KGs), which have a regular structure capturing entities and their interrelationships. We identify three major problems in KG entity resolution: (1) intra-KG reference ambiguity; (2) inter-KG reference ambiguity; and (3) ambiguity when extending KGs with new facts. We implement a framework that generalizes across these three settings and exploits this regular structure of KGs. Our framework has many advantages over custom solutions widely deployed in industry, including collective inference, scalability, and interpretability. We apply our framework to two real-world KG entity resolution problems, ambiguity in NELL and merging data from Freebase and MusicBrainz, demonstrating the importance of relational features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jay Pujara (44 papers)
  2. Lise Getoor (39 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.