Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Network Dynamics Framework for Energy-Efficient Ultra-Dense Cellular Networks (1607.00500v2)

Published 2 Jul 2016 in cs.IT, cs.NI, and math.IT

Abstract: This article investigates the performance of an ultra-dense network (UDN) from an energy-efficiency (EE) standpoint leveraging the interplay between stochastic geometry (SG) and mean-field game (MFG) theory. In this setting, base stations (BSs) (resp. users) are uniformly distributed over a two-dimensional plane as two independent homogeneous Poisson point processes (PPPs), where users associate to their nearest BSs. The goal of every BS is to maximize its own energy efficiency subject to channel uncertainty, random BS location, and interference levels. Due to the coupling in interference, the problem is solved in the mean-field (MF) regime where each BS interacts with the whole BS population via time-varying MF interference. As a main contribution, the asymptotic convergence of MF interference to zero is rigorously proved in a UDN with multiple transmit antennas. It allows us to derive a closed-form EE representation, yielding a tractable EE optimal power control policy. This proposed power control achieves more than 1.5 times higher EE compared to a fixed power baseline.

Citations (14)

Summary

We haven't generated a summary for this paper yet.