Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choquard equations under confining external potentials (1607.00151v1)

Published 1 Jul 2016 in math.AP

Abstract: We consider the nonlinear Choquard equation $$ -\Delta u+V u=(I_\alpha \ast \vert u\vert p)\vert u\vert {p-2}u \qquad \text{ in } \mathbb{R}N $$ where $N\geq 1$, $I_\alpha$ is the Riesz potential integral operator of order $\alpha \in (0, N)$ and $p > 1$. If the potential $ V \in C (\mathbb{R}N; [0,+\infty)) $ satisfies the confining condition $$ \liminf\limits_{\vert x\vert \to +\infty}\frac{V(x)}{1+\vert x\vert {\frac{N+\alpha}{p}-N}}=+\infty, $$ and $\frac{1}{p} > \frac{N - 2}{N + \alpha}$, we show the existence of a groundstate, of an infinite sequence of solutions of unbounded energy and, when $p \ge 2$ the existence of least energy nodal solution. The constructions are based on suitable weighted compact embedding theorems. The growth assumption is sharp in view of a Poho\v{z}aev identity that we establish.

Summary

We haven't generated a summary for this paper yet.