A Joint Typicality Approach to Algebraic Network Information Theory (1606.09548v1)
Abstract: This paper presents a joint typicality framework for encoding and decoding nested linear codes for multi-user networks. This framework provides a new perspective on compute-forward within the context of discrete memoryless networks. In particular, it establishes an achievable rate region for computing the weighted sum of nested linear codewords over a discrete memoryless multiple-access channel (MAC). When specialized to the Gaussian MAC, this rate region recovers and improves upon the lattice-based compute-forward rate region of Nazer and Gastpar, thus providing a unified approach for discrete memoryless and Gaussian networks. Furthermore, this framework can be used to shed light on the joint decoding rate region for compute-forward, which is considered an open problem. Specifically, this work establishes an achievable rate region for simultaneously decoding two linear combinations of nested linear codewords from K senders.