Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Randomized Algorithms for the Fixed-Precision Low-Rank Matrix Approximation (1606.09402v3)

Published 30 Jun 2016 in math.NA, cs.DC, cs.DS, and cs.NA

Abstract: Randomized algorithms for low-rank matrix approximation are investigated, with the emphasis on the fixed-precision problem and computational efficiency for handling large matrices. The algorithms are based on the so-called QB factorization, where Q is an orthonormal matrix. Firstly, a mechanism for calculating the approximation error in Frobenius norm is proposed, which enables efficient adaptive rank determination for large and/or sparse matrix. It can be combined with any QB-form factorization algorithm in which B's rows are incrementally generated. Based on the blocked randQB algorithm by P.-G. Martinsson and S. Voronin, this results in an algorithm called randQB EI. Then, we further revise the algorithm to obtain a pass-efficient algorithm, randQB FP, which is mathematically equivalent to the existing randQB algorithms and also suitable for the fixed-precision problem. Especially, randQB FP can serve as a single-pass algorithm for calculating leading singular values, under certain condition. With large and/or sparse test matrices, we have empirically validated the merits of the proposed techniques, which exhibit remarkable speedup and memory saving over the blocked randQB algorithm. We have also demonstrated that the single-pass algorithm derived by randQB FP is much more accurate than an existing single-pass algorithm. And with data from a scenic image and an information retrieval application, we have shown the advantages of the proposed algorithms over the adaptive range finder algorithm for solving the fixed-precision problem.

Citations (11)

Summary

We haven't generated a summary for this paper yet.