Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Routing Memento Requests Using Binary Classifiers (1606.09136v1)

Published 29 Jun 2016 in cs.DL

Abstract: The Memento protocol provides a uniform approach to query individual web archives. Soon after its emergence, Memento Aggregator infrastructure was introduced that supports querying across multiple archives simultaneously. An Aggregator generates a response by issuing the respective Memento request against each of the distributed archives it covers. As the number of archives grows, it becomes increasingly challenging to deliver aggregate responses while keeping response times and computational costs under control. Ad-hoc heuristic approaches have been introduced to address this challenge and research has been conducted aimed at optimizing query routing based on archive profiles. In this paper, we explore the use of binary, archive-specific classifiers generated on the basis of the content cached by an Aggregator, to determine whether or not to query an archive for a given URI. Our results turn out to be readily applicable and can help to significantly decrease both the number of requests and the overall response times without compromising on recall. We find, among others, that classifiers can reduce the average number of requests by 77% compared to a brute force approach on all archives, and the overall response time by 42% while maintaining a recall of 0.847.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (21)

Summary

We haven't generated a summary for this paper yet.