Papers
Topics
Authors
Recent
Search
2000 character limit reached

Biconnectivity, $st$-numbering and other applications of DFS using $O(n)$ bits

Published 28 Jun 2016 in cs.DS | (1606.08645v3)

Abstract: We consider space efficient implementations of some classical applications of DFS including the problem of testing biconnectivity and $2$-edge connectivity, finding cut vertices and cut edges, computing chain decomposition and $st$-numbering of a given undirected graph $G$ on $n$ vertices and $m$ edges. Classical algorithms for them typically use DFS and some $\Omega (\lg n)$ bits\footnote{We use $\lg$ to denote logarithm to the base $2$.} of information at each vertex. Building on a recent $O(n)$-bits implementation of DFS due to Elmasry et al. (STACS 2015) we provide $O(n)$-bit implementations for all these applications of DFS. Our algorithms take $O(m \lgc n \lg\lg n)$ time for some small constant $c$ (where $c \leq 2$). Central to our implementation is a succinct representation of the DFS tree and a space efficient partitioning of the DFS tree into connected subtrees, which maybe of independent interest for designing other space efficient graph algorithms.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.