Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maps of sparse Markov chains efficiently reveal community structure in network flows with memory (1606.08328v1)

Published 27 Jun 2016 in cs.SI and physics.soc-ph

Abstract: To better understand the flows of ideas or information through social and biological systems, researchers develop maps that reveal important patterns in network flows. In practice, network flow models have implied memoryless first-order Markov chains, but recently researchers have introduced higher-order Markov chain models with memory to capture patterns in multi-step pathways. Higher-order models are particularly important for effectively revealing actual, overlapping community structure, but higher-order Markov chain models suffer from the curse of dimensionality: their vast parameter spaces require exponentially increasing data to avoid overfitting and therefore make mapping inefficient already for moderate-sized systems. To overcome this problem, we introduce an efficient cross-validated mapping approach based on network flows modeled by sparse Markov chains. To illustrate our approach, we present a map of citation flows in science with research fields that overlap in multidisciplinary journals. Compared with currently used categories in science of science studies, the research fields form better units of analysis because the map more effectively captures how ideas flow through science.

Citations (18)

Summary

We haven't generated a summary for this paper yet.