Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate type G Matérn stochastic partial differential equation random fields (1606.08298v3)

Published 27 Jun 2016 in stat.ME

Abstract: For many applications with multivariate data, random field models capturing departures from Gaussianity within realisations are appropriate. For this reason, we formulate a new class of multivariate non-Gaussian models based on systems of stochastic partial differential equations with additive type G noise whose marginal covariance functions are of Mat\'ern type. We consider four increasingly flexible constructions of the noise, where the first two are similar to existing copula-based models. In contrast to these, the latter two constructions can model non-Gaussian spatial data without replicates. Computationally efficient methods for likelihood-based parameter estimation and probabilistic prediction are proposed, and the flexibility of the suggested models is illustrated by numerical examples and two statistical applications.

Summary

We haven't generated a summary for this paper yet.