Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable-Sized Uncertainty and Inverse Problems in Robust Optimization (1606.07380v1)

Published 23 Jun 2016 in math.OC

Abstract: In robust optimization, the general aim is to find a solution that performs well over a set of possible parameter outcomes, the so-called uncertainty set. In this paper, we assume that the uncertainty size is not fixed, and instead aim at finding a set of robust solutions that covers all possible uncertainty set outcomes. We refer to these problems as robust optimization with variable-sized uncertainty. We discuss how to construct smallest possible sets of min-max robust solutions and give bounds on their size. A special case of this perspective is to analyze for which uncertainty sets a nominal solution ceases to be a robust solution, which amounts to an inverse robust optimization problem. We consider this problem with a min-max regret objective and present mixed-integer linear programming formulations that can be applied to construct suitable uncertainty sets. Results on both variable-sized uncertainty and inverse problems are further supported with experimental data.

Summary

We haven't generated a summary for this paper yet.