Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at $ u = 0 $ (1606.07267v2)

Published 23 Jun 2016 in math.AP

Abstract: In this paper we consider a semilinear elliptic equation with a strong singularity at $u=0$, namely $ \displaystyle u\geq 0 \mbox{ in } \Omega$, $ \displaystyle - div \,A(x) D u = F(x,u) \mbox{ in} \; \Omega$, $u = 0 \mbox{ on} \; \partial \Omega$, with $F(x,s)$ a Carath\'eodory function such that $$ 0\leq F(x,s)\leq \frac{h(x)}{\Gamma(s)}\,\,\mbox{ a.e. } x\in\Omega,\, \forall s>0, $$ with $h$ in some $Lr(\Omega)$ and $\Gamma$ a $C1([0,+\infty[)$ function such that $\Gamma(0)=0$ and $\Gamma'(s)>0$ for every $s>0$. We introduce a notion of solution to this problem in the spirit of the solutions defined by transposition. This definition allows us to prove the existence and the stability of this solution, as well as its uniqueness when $F(x,s)$ is nonincreasing in $s$.

Summary

We haven't generated a summary for this paper yet.