Papers
Topics
Authors
Recent
2000 character limit reached

Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems

Published 22 Jun 2016 in physics.plasm-ph | (1606.07005v1)

Abstract: An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed. The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields and internal energy are treated as discrete differential form fields on a fixed mesh. With the assistance of Whitney interpolating forms, this scheme preserves the gauge symmetry of the electromagnetic field, and the pressure field is naturally derived from the discrete internal energy. The whole system is solved using the Hamiltonian splitting method discovered by He et al., which was been successfully adopted in constructing symplectic particle-in-cell schemes. Because of its structure preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and the oscillating two-stream instability.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.