Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant (1606.06436v6)

Published 21 Jun 2016 in math.AP, math-ph, math.MP, and quant-ph

Abstract: In this paper the Hartree equation is derived from the $N$-body Schr\''odinger equation in the mean-field limit, with convergence rate estimates that are uniform in the Planck constant $\hbar$. Specifically, we consider the two following cases:(a) T\''oplitz initial data and Lipschitz interaction forces, and (b) analytic initial data and interaction potential, over short time intervals independent of $\hbar$. The convergence rates in these two cases are $1/\sqrt{\log\log N}$ and $1/N$ respectively. The treatment of the second case is entirely self-contained and all the constants appearing in the final estimate are explicit. It provides a derivation of the Vlasov equation from the $N$-body classical dynamics using BBGKY hierarchies instead of empirical measures.

Summary

We haven't generated a summary for this paper yet.