Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on strong normalization in classical natural deduction (1606.06387v1)

Published 21 Jun 2016 in cs.LO

Abstract: In the context of natural deduction for propositional classical logic, with classicality given by the inference rule reductio ad absurdum, we investigate the De Morgan translation of disjunction in terms of negation and conjunction. Once the translation is extended to proofs, it obtains a reduction of provability to provability in the disjunction-free subsystem. It is natural to ask whether a reduction is also obtained for, say, strong normalization; that is, whether strong normalization for the disjunction-free system implies the same property for the full system, and whether such lifting of the property can be done along the De Morgan translation. Although natural, these questions are neglected by the literature. We spell out the map of reduction steps induced by the De Morgan translation of proofs. But we need to "optimize" such a map in order to show that a reduction sequence in the full system from a proof determines, in a length-preserving way, a reduction sequence in the disjunction-free system from the De Morgan translation of the proof. In this sense, the above questions have a positive answer.

Summary

We haven't generated a summary for this paper yet.