Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance of Motion and Appearance Featuresfor Spatio Temporal Recognition Tasks (1606.05355v1)

Published 16 Jun 2016 in cs.CV

Abstract: In this paper, we introduce an end-to-end framework for video analysis focused towards practical scenarios built on theoretical foundations from sparse representation, including a novel descriptor for general purpose video analysis. In our approach, we compute kinematic features from optical flow and first and second-order derivatives of intensities to represent motion and appearance respectively. These features are then used to construct covariance matrices which capture joint statistics of both low-level motion and appearance features extracted from a video. Using an over-complete dictionary of the covariance based descriptors built from labeled training samples, we formulate low-level event recognition as a sparse linear approximation problem. Within this, we pose the sparse decomposition of a covariance matrix, which also conforms to the space of semi-positive definite matrices, as a determinant maximization problem. Also since covariance matrices lie on non-linear Riemannian manifolds, we compare our former approach with a sparse linear approximation alternative that is suitable for equivalent vector spaces of covariance matrices. This is done by searching for the best projection of the query data on a dictionary using an Orthogonal Matching pursuit algorithm. We show the applicability of our video descriptor in two different application domains - namely low-level event recognition in unconstrained scenarios and gesture recognition using one shot learning. Our experiments provide promising insights in large scale video analysis.

Citations (9)

Summary

We haven't generated a summary for this paper yet.